THE SCALES OF SOME QUEENSLAND FISHES.

By T. D. A. Cockerell, University of Colorado.

I am greatly indebted to Dr. R. Mamlyn-Marris for a very interesting serics of scales of the fishes of Queensland. They not only belong to species, the scales of which have not been studied aecording to the methods of modern lepidology, but they are of interest as enabling us to see whether the fishes of the Southerm Iemisphere differ markedly in scale characters from their allies in the North.

OSTEOGIOSSID.

Scleropages leichardti Günther. The large scales are retieulated and have beaded circuli, in the typieal Osteoglossid mamer. The structure of the scale is quite the same in S. leichardti from Queensland, S. formosus from Borneo, and Osioglossum bicirrosum from Brazil, notwithstanding the wide geographical scparation of these fishes. (See also Science, May 26, 1911, p. 831.)

IIEMIIRIAMPIID AE.

The scales in this family are mueh broader than long; nucleus central or nearly; apical margin simple; basal margin frequently lobulate; apical field covered with very fine and dense transverse circuli ; basal half of seale with much more widely spaced circuli, which bend upwards laterally, and meet the cirenli of the series above the nucleus, forming angles (often rery acute angles) with them. Two or three basal radii are nearly always developed.

The Queensland species may be separated thus:-
Scales (which have a transverse diameter of 12 mm , or over)
with very prominent basal lobes Hemirhamphus far Forskal.
Scales without such basal lobes 1.

1. Scales with the eirenli of tho upper and lower halves
regularly meeting at sides, forming acute angles .. Hemirhamphus quoyi Cuv. \& Val.
Scales with tho circuli of the upper and lower halves not reqularly meeting, usually separated at sides hy a
space frec from circuli Hemirhamphus regularis Günther.
One of the $I I$. quoyi seales, apparently from the lateral line, has a large obtuse apical lobe. The speeies are not separated by very marked characters, and prohably intermediate seales will be found. Indeed, the constancy of the type is shown by the fact that Hyporhamphus unifasciatus, from Woods Mole, Mass.
(U.S. Bureau of Fisheries), and Balboa, Panama Canal Zonc (Meek and Hildebrand, U.S.N.M.), has scales which differ very little from those of Hemiramphus quoyi, though occasionally nearly as well lobed basally as I. far. Young scales of II. unifascialus (and doubtless also of the species of IIcmirhamphus) show the apical area without circuli, and the dense transverse eirculi begin to form close to the line where the lower ones end.

It remains to be noted that, in addition to the features described, there is a minute sculpture which seems to he due to the eracking of the surface of the scale. In II. unijascialus it takes the form of series of very fine lines which are usually more or less curved, and form semispiral systems which often cross, giving rise to a minute retieulation. In IIemirhomphus quoyi these lines are less frequent, and cross the fine circuli at right angles. In H. rogularis there is produced a fine irregular reticulation between the circuli. In H. far there is often a much eoarser and extremcly irregular reticulation cxtending across the middle of the scale.

Ciypsilurus scales (six species examined) are of the same general type as those of the Hemirhamphide, but less extreme, with the circuli usually vertical at the sides, and those of the upper and lower halves of the scale not widely different.

ATHERINIDA.

Scales of Atherina are longer than broad, with very prominent laterobasal angles and more or less straight sides. The apical margin is thin and without tecth; the basal margin is more or less prominently lohulate. There are no basal radii, but ray-like grooves or ehannels often extend upwards, gradually fading, from between the basal lobules. The basal half of the scale lias fine transverse circuli, much as in Hemirhanphide, but the apical half is wholly without circuli, thus recalling the young of Hyporhamphus unifasciatus. There are very fine irregular lines due to cracking, as in the Hemirhamphidie.

I have not seen enough material to be sure of the specific eharacters of the Queensiand species, but they are apparently separable thus:-
Scales comparatively large, much broador than long, with about three very abrupt and prominent lobes close together at the middle of the straight basal side Atherina pinguis Lacép. Scales smaller, not so broad, not trilobed in middle of baso 1 . I. Median basal lobe very prominent Atherina lacunosa Forster. Median basal lobo low and broad, not prominent Atherina honorioe Ogilby.

Atherina slipes Müller and Trosehel, from Toro Point, Panana Canal Zone (Mcek and IIldebrand, U.S.N.M.), has entirely the same gencric eharacters in the scale. It is practically as in A. pinguis, the base trilobed, varying to two or one lobed. Oceasional seales of both species are more or less clearly multilobed; this is especially to be noted in A. pinguis. One scale of A. honorice shows
a strongly lobulate or scalloped apical margin, whieh is a regular charaeter of Kirtlandia laciniata and Chirostoma crystallinum.

Atherina scales differ from those of the other Atherinidæ studiednamely, Atherinops, Kirllandia, Chirostorna, and Menidia-in the absence of circuli in the apieal field, and of basal radii.

MUGILID.

Scales of Mugil are semicircular, or rather represent somewhat more than a half-circle. with a straight or nearly straight base. The genus Liza, which I had not hefore seen, differs at onee by the quadrate seales, with straight sides, althongh the apical margin is rounded as in Mugil. The Liza seales before me are light green, perhaps owing to some peeuliar eondition of preservation.

Comparing the scales of Mugil goorgii Ogilby, from Queensland, with those of the American M. curema C.\& V., I find some marked differences, as follows :-

Ctenoid aroa largely developod, interrupting the circuli apicad of the nucleus; basal radii close together, subparallel or converging toward the marg n.. ..
Ctenoid area prorly developed, at least in some scales, so that many circuli may cross the apical field; basal radii (:even or fewer) diverg ng from the nuclear region, crranged in a fan-like manner M. georgii.
The matter of the etenoid area is not to be taken very seriously, as M. georgii scales differ greatly: but the difference in the radii appears to be important, and indicates that MI. gcorgii has the more prinitive type of scale.

Mugil trichodon Poey, from Itonduras (C. H. Townsend, U.S.N.MI.), has seales wery like those of M. curema, but with distinct laterobasal angles (these are oblusely 1 ounded in curcma) and the basal radii (except the middle ones) more spreading, hut very irregular and unlike those of M. georgii. The laterobasal angles of M. georgii are as in M. trichodom. The M. trichodon scales differ from both the others in having a straight median groove running from base to apex, though not entering the broad papery apical margin, which is in a sense distinct from the scale proper.

The Liza scales are large, with extremely fine cireuli, and radiating basal radii (5 or 6) like those of M. georgii. In the apical field the cireuli are broken up into very fine irregular tubercles; in L, splendens de Vis (at least in the two scales before me) there is no etenoid area at all; but in L. waigiensis Quoy and Gaimard the tubereles are seen to directly pass into dentiforin ctenoid struchures close to the margin, the teeth so formed being triangular, with a strong modian ridgo representing the original tubercle.

In L. splendens there is a thin papery apical fringe, as in Mugil, but it is crenate-margined, and divided by radial lines, which slightly enter the
substance of the seales. In both speeies there may be a rather irregular transverse radial line, erossing the middle of the seales but not reaehing the extreme sicies. In both, the laterobasal angles are practieally right angles. The dimensions are-L. splendons, length 13 , breadth $111 / 2 \mathrm{~mm}$; L. waigiensis, length 11, breadth 10 mm .

HOLOCENTRID A.

Holocentrus angustifrons Ogilby, from Queensland, has scales about $51 / 2 \mathrm{~mm}$. long and 8 broad, the apical margin with strong straight teeth; the sides sloping to the very broad base, the laterobasal angles therefore extremely prominent; the straight base with about four lobules, the ends of longitudinal ribs, near the middle. Cireuli very fine, failing apieally; region below the nueleus more or less pustulose. Exeept that the laterobasal eorners project more, these seales agree with those of H. diadoma Lacép., from Hawain. The seales of the species of Holocentrus are on the whole very uniform.

PEMPHERID .

Pempheris multiradiatus Klunzinger. Scales of three sorts; it is noted on the label, "breast scales ctenoid." Seales broader than long, with a diameter of 3 to 4 mm . Normal cycloid scales broadly rounded apieally, with a nearly central nucleus from whieh proeed, in a radiating manner, about five very distinet basal radii; basal margin deeply sealloped; laterobasal angles obtuse; basal half of seale with fine cirenli, but these are absent from the apieal field, which exhibits only growth lines. Lateral line scales are broader, and are without the basal radii and basal scallops; the basal margin is convex in the middle and concave sublaterally. The lateral line eanal has a very broad bilobed appendage. The clenoid breast scalcs are very different from the others, quadrate, with straight sides, but broader than long, the apieal margin with numerous strong straight teeth. The basal radii and seallops are as in the first type of seale described. There is no etenoid pateh; the marginal teeth are exartly like those of Holocentrus.

I have scales of Pempheris (? otaitensis) from the Red Sea, whieh resemble the normal eyeloid type described above, but are considerably broader, with the circuli continuous across the apieal field.

Neopempheris ramsayi Nacleay. Seales apparently all ctenoid, with a very well developed ctenoid pateh. Seales about 3 mm . diameter, somewhat broader than long, subquadrate, nueleus a little above the middle; four or five very strong basal radii or folds, and basal margin very strongly sealloped; eircuii rery fine; etenoid structure consisting of rows of elongate teeth. The apical teeth are much as in Mullus, but their bases are broadened, and the whole ctencid area is eonfused, not beautifully distinet in all its details as in Mullidæ.

There is nothing in the seales of Pempheride to suggest assoeation with the genus Beryx．Pompheris，however，strongly suggests Holocentrus．Pempheris is so different from Noopemphoris as to suggest two distinct subfamilies， Pempherine for the first and Neopempherine for the second．Bathyclupea is separated by Jordan as a family Bathyclupeidx．

CHEILODACTYLID $工$

Cheilodactylus nigricans Riehardson．Scales subquadrate，broader than long，about 5 mm ．long and $51 / 2$ broad；basal radii numerous（about 16 ）；latero－ basal eorners very obtuse；nuclens a little above middle；circuli very fine and dense；a few cireuli crossing above the nucleus，but most of the lateral eireuli eome to an end above，first curving slightly outuards．The scales are not at all etenoid，and the apical field（covered with dark skin）has a pustnlar or perforate strueture，somewhat suggestive of Beryx．C．variogatus，from Pern （P．O．Simons，U．S．N．M．），has similar scales，but larger，with the pustules larger in proportion，and not circular．It is elearly seen，in this species，that they represent broken－np apieal circuli．

SERRANID 厌。

Epinephelus estuarius Macleay，or E．megachir Rieh．（the first name is on the list sent，but the second on the label of the specimens）has greatly elon－ gatec，parallel－sided seales，about 8 nim．long and 4 broad，with only a small apieal portion covered by the black skin．The nuclear area is greatly elongated， extending down the middle of the seale，and consequently the strong basal radii， arranged fanwise，S or 9 in number，begin below the middle of the scale，often far below．The basal margin is erenate．The ctenoid patch is very well developed，and the marginal tecth are broadened at the end，and truneate． These scales differ from those of \mathscr{F} ．nivcatus（Cuv．\＆Val．）by the proportionately smaller and truneate tecth，and especially by the elongated nuclear area；but my examples of E．niveatus are probably young．The scales of Epinepheluts elosely resemble those of Paralabrax，but those of the latter are less elongatcd． The scales of Centropristes，Moronc，Roccus，Pcrcichthys，and Plesiops are not clongated．

LUTIANIDAE．

Lutianus sebæ Bloch．Scales subquadrate，about 12 mm ．long and broad； laterobasal comers rounded；abont 20 strong basal rarlii ；ctenoid pateh very distinct，apical tecth pointed，sometimes slightly bifid at end；submarginal elements like short phalanges．

Lutianus jolnii Ploch．Scales ibbout $51 \% \mathrm{~mm}$ ．long and broad；basal radii 9 or less；etenoid struetures as in L ．scbce．These scales are perhaps immature．In general，the two species agree very closely in their scales，and also agree nearly with Neomenis griseus（L．）from Tampa，Florida．The Neomenis，
however, has more than twiee as many basal radii as L. johnii, in seales of about the same size. The Ncomanis has minutely beaded basal circuli, and both the species of Lutianus show exactly the same feature.

The soale of Tuhlia rupestris C. \& V. (Kuhhidxe), from Mauritius, is extremely like that of Lutianus, except that it has more prominent laterobasal angles, and the submarginal elements of the ctenoid patch are somewhat longer. They are distinguishable, but from the scales alone I should have supposed them to be closely allied members of one family.

SPARID A.

Pagrosomus auratus Forster. Scales about 19 mm . long and 21 broad; suinquadrate, with convex (bulging) sides, and crenate lower margin; nucleus above the middle; about ! distinct basal rarlii, arzanged fanwise; basal circuli minutely beaded; etenoid pateh large, but the elements mostly ill-defined, those near the margin distinct, and very short, some broader than long; marginal teeth sharply pointed. Sparsely seattered over the ctenoid patch are black dots or minute streaks, which appear under the compound microscope to be little canals with round openings. This last feature strongly suggests the perforations of the same region in Beryx.

Sparus sarba Forskal. Scales reddish, very broad, about $71 / 2 \mathrm{~mm}$. long and $101 / 2$ broad; hasal radii about 14 , widely spreading. Structure as in Pagrosomizs, but shapre different.

Lethrinus harak Forskal. Seales abont $61 / 2 \mathrm{~mm}$. long and broad, thas differing from Pagrosomus in the opposite direction from Sparus. Basal radii about 15. Strueture as in the other genera, with the same scattered perforations in the ctenoid area; but the subapical ctenoid elements are quite different, being elengated, consisting of a stick-like central rib, with a margin of nearly equal width on each side of it.

I find that the seales of Dentex vulgaris, from England, show seattered perforations in the etenoid area, just as in the Australian Sparidx. The ctenoid patch of Dentex has a lioneycomb-like pattern.

THERAPONIDA.

Therapon jarbua Forskal. Bonkenger lists Therapon as a genus of Lutianine. The scales are subquadrate, longer than hroad; length about 27 mm., breadth about 2 ; sides parallel; laterobasal corners rectangular; nucleus above middle; about 9 strong basal radii; lower margin scalloped; basal circuli minutely beaded; lateral circuli rather coarse; ctenoid patch well developed; apical teeth sharp; subapical clements of ctenoid patch short; the ridge or keel rumning down the teeth is eontinued on to the elements below, so that the ctenoid area presents a series of radiating ridges.

These scales do not closely resemble those of Lutianus. They are also unlike the scales of the Sparidæ. They do, however, quite closely resemble the scales of Paralabrax.

KYPHOSIDE.

Kyphosus cinerascens Forskal. Seales subquadrate, broader than long, a large ene about $81 / 2 \mathrm{~mm}$. long and a little over 10 broad; 7 to 9 strong basal radii; hasal uargin scalloped: basal circuli finely beaded; etenoid patch well developed; marginal teeth sharp; submarginal clements of etenoid patch longer than broad. broadened at base. The lowermost part of the skin-covered area shows coarse irregular dendritie markings, consisting of ridges which are directly connected with those of the etenoid patch, leading to the marginal teeth. The scales of Kyphosus sectatrix (L.), from Massachusetts (Menemsha Bight), are sonewhat modified from this type, but the essential generic claracters are quite the same. The thickened perforated band which crosses the middle of the seale of K. sectatrix is rather indistinctly indicated in K. cinerascons, representing in fast the denser basal part of the dendritic area.

SILLAGINTDA.

Sillago maculata Quoy and Gaimard. Scales subquadrate, broader than long, about 3 mm . long and 31/2 broad: nucleus subapical; seven or eight very distinct basal radii, spreading fanwise; basal margin searcely at all scalloped; laterobasal eorners rectangular; only about every third of the basal circuli contimed to the sides, the lateral circuli consequently widely spaced; marginal teet l_{1} very sharp; ctenoid patcl a mere narrow band, with only about two distinct clements below the teeth (at the sides one or none), these very short and broad.

These seales suggest those of the Gobiids, which are, however, of a more extreme type. [is Ctenogobius virgatulus (Jordan \& Snyder), from Japan, I find the basal exeuli, many of them, stopping short at the begimning of the lateral field. There is a close resemblance between the seales of Sillago and those of some Scirnida, in which the muclens is far toward the apex. A very good example is found in Menlicirhus saxatilis Bl. \& Schn., from Woods Hole, Massachusetts. Boulenger remarks that the Sillaginidx connect the Serranidx with the Scixnide. The scales suggest that the affinity is closest with the Sciænidr.

POMACENTRID E.

Glyphisodon palmeri Ogilby. Seales subquadrate, broader than long, a large one about 8 mm . long and $81 / 2$ broad; about 8 or 9 strong basal radii; basal margin sealloped; circuli extremely fine; ctenoid area well developed;
marginal tecth sharp; below the ctenoid area is a broad region covered with reticulations and dendriform markings, obviously consisting of modified cireuli, and connecting at sides with the lateral circuli. The canal of the lateral line scales has some irregular branches at its apieal end. The submarginal elements of the etenoid patch are much longer than broad.

This scale is in all respects very similar to that of Abudefduf saxatilis (L.), from Sorocco Island, but the Glyphisodon seales can be distinguished by the conspicuously developed reticulated or dendriform area, the marking of this region in the Abudcfduf being minute and labyrintliform. Abudefduf has also broader scales than Glyphisodon. while those of Eupomacentrus leucostictus (Müll. \& Trosch.) are much broader than those of Abudefduf.

LABRIDAE.

Chœerodon venustus de Vis. Scales subquadrate, about 17 mm . long and 15 broad; basal radii very numerous, about 36 , many ending on the lateral margins; basal margin hardly at all scalloped; circuli (lateral and basal) extremely fine : apical margin thin, not etenoid, with numerous fine longitusinal radij.

Pseudolabrus gymnogenis Günther. Scales similar in form to those of the last, about 16 mm . long and 14 broad; structure also as in the Chorodon, except that the broad nuelear region is covered with irregular reticulations, which are only weakly developed in the Chacrodon.

In Charodon, the very numerous apical radii have the appearance of widely spaced circuli, and with a lens appear to be actually continuous at the sides with the lateral circnli. The compound microseope shows that this is not really the case; and in Pscudolabrus the apical lines are directly continuous into the reticulated patch, which on the other side is contimuous with the basal radii. The whole, thercfore, belongs to the radial system.

Eupetrichthys angustipes Ogilby. Scales parallel-sided, longer than broad: but not greatly so; length about 6 mm . ; basal margin convex, not sealloped; basal radii abont 25 , of which about four on each side and on the lateral margin; apical radii well developed, no closer than the basal, and hence very different from those of the other two genera deseribed above. No reticulated discal area. Lateral line canal with numerous stout branches at the apical end, each ending in a perforation of the minutcly spotted skin, and having one or more smaller round perforations in its course. (Compare Günther's figure of the seale of Labrichthys.)

All these seales have the form and structure characteristic of the Labridx. Those of Chrerodon and Pseudolabrus are in general much like those of Iridio bivittatus Bloch, from Key West. Florida, and Tautogolabrus adspersus (Walb.) ;
but Irillo has the apical radii more widely spaced, while Tautogolabrus has them almost entirely obsolete.

The scales of Eupetrichlhys are very like those of Emmeekia venusta (Jenkins \& Evermann), from the Gulf of California.

GOBIID A.

Hypseleotris compressus Krefft. Scales about $2 \frac{1}{2} \mathrm{~mm}$. long and $3 \frac{1}{3}$ broad, of perfectly typical Gobiid type, with the nucleus subapical, the apical margin (exerept in latinucleate seales) raised and ronf-like in outline, \&c. The structure is as in the Japanese Ctenogobius virgatulus, but the middle of the apical margin is less clevated. Gobiid scales, wherever they come from, are very characteristic, and very much alike.

NOTOTHENIID E.

Parapercis cylindrica Bloch. Boulenger places this in the Leptoscopidx; I follow the labelling of the Quecnsland Muserm. Scales subquadrate, a little broadened basally; length and breadth about 2 mm .; nucleus not far from apex; basa! radii about ten, strong, spreading; hasal margin weakly scalloped; basal circuli very dense; lateral circuli moch fewer and coarser; apical teeth large and sharp; subapical etenoitl clements well defined, broader than long, about four rows distinct.

It is a singular thing, that the ctenoid features of this scale, including the submarginal clements, exactly agree with those of certain Percidæ, as for example Itudiopterus peltatus, fiom North Carolina. The whole scale is, in fact, very like that of Percidx. On the other hand, the seales of Parapercis are not very unlike those of the Scorpenid genus Sebastodes, from California.

It will be seen from all of the above, that the scales of Southern fishes closely rescmble those of their Northern relatives. On the whole, the present paper serves strongly to confirm the validity of scale characters, showing that family and generie characters hold good over the world.

